Category Archive: Molded Cable Assemblies

The Ultimate Guide to USB Cables

In 1994, Compaq, DEC, IBM, Intel, Microsoft, NEC, and Nortel collaborated to develop the Universal Serial Bus (USB), a cable designed to standardize the connection between computers and peripheral devices such as keyboards, printers, network adapters, cameras, and storage equipment. USB was created to address usability issues [1], simplify software configurations, and permit greater data rates for external devices.

Shortly thereafter, in 1995, these same companies formed the USB Implementers Forum, Inc. (USB-IF) [2], a nonprofit organization created to support and facilitate the continuous advancement and adoption of USB technology and high-quality compatible USB devices.

In this post, we’ll be outlining the various advancements in USB technology over the years while exploring their impact on manufacturers and consumers alike.

USB Types

The original USB specification, introduced in the ’90s, defined connectors with data transfer rates of 1.5 megabits per second (Mbps) as low speed, while connectors with transfer rates of 12 Mbps were classified as full speed. Over the years, however, various styles have become available; in fact, most computers today are equipped with several USB ports.

Let’s first take a look at the different types of connectors available today.USB Types

USB A-Type

Type A Type B USBConsidered the standard and most common type of connector, A-style connectors are found on the PC or charger side of most cables. This flat, rectangular interface joins directly to host devices and is held in place through friction. Durable enough for continuous connection but easy enough for users to connect and disconnect, this connector type is also available in micro variations.

USB B-Type

Type-B USBs were traditionally used with printer cables but, with the advent of wireless printing, they’re now more often used in cell phones as Micro-USB B adapters; they’re also used in various peripheral devices [3] such as mobile printers and external hard drives. These USBs feature a square interface and are available as a Micro-USB B, USB Mini-b (5-pin), and USB Mini-b (4-pin).

USB C-Type

USB Type C The newest type of connector on the market, Type-C is a one-size-fits-all solution. Featuring a reversible, symmetrical interface, this thinner, sleeker design is intended to replace older, larger USBs, though it can be adapted to support legacy connectors as well. Its small size allows all devices to easily adopt the single USB connector shape, eliminating the need for various types of cables.

USB Revisions and Specifications

USBs are further classified by their power specifications. Each version now features increased bandwidth, allowing for compatibility with a broader range of devices and applications.

USB 1.1

Though now obsolete, USB 1.1 or Full-Bandwidth USB was the first widely used consumer USB, allowing a maximum bandwidth of 12 Mbps for basic devices such as computer mice and keyboards.

USB 2.0

Also called the High-Speed USB, version 2.0’s main improvement was the upgrade to a bandwidth of 480 Mbps [4]; this allows for use in higher-bandwidth devices such as adapters, transfer cables, and mass storage equipment. USB 2.0 also offers backward compatibility to support USB 1.1 devices.

USB 3.0 aka USB 3.1 Gen 1

Dubbed the SuperSpeed USB, 3.0 further improves upon the 2.0’s bandwidth, jumping to a maximum of 4.8 Gbps with backward compatibility for legacy devices.

USB 3.1 aka USB 3.1 Gen 2

A key identifier of the latest USB 3.1 is the switch to blue connectors. Quickly gaining adoption in new products like the Apple MacBook, USB 3.1 Gen 2 is capable of transfer speeds up to 5 Gbps.

USB Power Delivery Standards

Every USB advancement has offered enhanced power delivery standards and improved communication capabilities among devices.

  USB 1.1 USB 2.0 USB 3.0 USB 3.1
Also Known As USB 3.1 Gen 1 USB 3.1 Gen 2
Release Date 1998 2000 2008 2013
Speed/Transfer Rate Full Speed

12 Mbit/s

High Speed

480 Mbit/s

SuperSpeed

5 Gbit/s

SuperSpeed

10 Gbit/s

Power N/A 5V, 1.8A 5V, 1.8A 20V, 5A
Max Cable Length 3 Meters (9’10”) 5 Meters (16’5”) 3 Meters (9’10”) 3 Meters (9’10”)

USB Type-C

As touched upon earlier, the most recent development in USBs, USB Type-C, is designed as a one-size-fits-all solution for data transfer and power supply on any device. Featuring a smaller connector, Type-C fits into one multi-use port to simultaneously charge devices and transfer data and also offers backward compatibility to support previous USB standards (2.0, 3.0, and 3.1).

USB Type-C 3.1’s reversible cable enables two-way power and data transfer, with 10 Gbit/s of bandwidth and power up to 20V at 5 Amps [6], or a total of 100 W — enough power to charge a laptop or provide 4K monitor resolution with one slim, streamlined cable.

A universal and nonproprietary technology, Type-C is quickly becoming the new standard for operating systems and hardware providers; Intel’s Thunderbolt recently switched to USB Type-C ports while enabling cross compatibility with USB 3.1, and Apple has announced that new MacBooks will feature a Type-C port [5]. In fact, USB-IF predicts that by 2019, all laptops, tablets, mobile phones, and other consumer electronics will be equipped with USB Type-C.

USB Cables From Consolidated Wire

For more than 100 years, Consolidated Electronic Wire & Cable has been delivering high-quality wire and cable solutions to countless markets and industries — at affordable prices. In addition to offering standard and custom products, our team can also create USB-C cables for all your charging and data transfer needs.

For more information about our Type-C manufacturing capabilities or our full standard and custom molded cable selection, contact us today.

References

[1] http://www.eetimes.com/author.asp?section_id=14&doc_id=1285237
[2] http://www.usb.org/about
[3] http://www.webopedia.com/TERM/P/peripheral_device.html
[4] http://www.attinternetservice.com/resources/mbps-vs-mbps/
[5] https://www.macrumors.com/roundup/usb-c/
[6] http://science.howstuffworks.com/environmental/energy/question501.htm

Explore Consolidated’s Informative Technical Resources

At Consolidated Electronic Wire & Cable, we are committed to providing our customers with the resources they need to make an informed decision. On our website, we offer a variety of technical documents with information regarding NEMA configurations, color coding and insulation tips, and other wire and cable specific information.

  • Solid & Stranded AWG Chart: AWG-specification information for all outside diameter & wire types, including solid, concentric, rope bunched & more.PrintedCableJacketPortfolio-retouched
  • NEMA Configurations for Plugs & Receptacles: NEMA plug & receptacle configurations for voltage ranging from 125V to 600V, 15 to 60 amperes.
  • Color Coding Charts: Consolidated Electronic Wire & Cable’s color coding charts for various types of cable & wire products.
  • Wire Insulation Characteristics: A comparison of various types of wire insulation materials, including PVC, polyethylene, polypropylene, rubber, Neoprene, TPR & PEP.
  • NEMA Number Nomenclature: View the NEMA number nomenclature for plugs & receptacles, as well as current ratings & voltages.
  • Cable Standards Reference Guide: View the Cable Standards Reference Guide for NEC catalog reference information and a cable substitution chart.

We encourage you to visit the Technical Info area of our website to view these documents. We hope they prove to be of some use to you and that you find the information you are looking for.

View Our Technical Info Documents



The Advantages of Molded Cable Assemblies

Cabling is one of those components that people don’t often give much thought to, right? Need to power up something? Grab a cable, plug it in and go!

But, what if that cable poses risks to which you are unaware? Could the construction of that cabling system cause a weakness in the wiring?

molded-cable-assemblies-coverThe answers to these questions can be found in our new eBook, The Advantages of Molded Cable Assemblies. In this new resource, we provide you with information on how the protection of the terminal shells is an overlooked area that can be the difference between strong and weak cable assemblies.

Cable assemblies are highly engineered products made up of wiring, insulation, jacket, and terminals. As cable production and insulation has progressed over the years the safety of the wiring has improved tremendously. Intact cabling poses little risk of failure. The failures occur when the cables are cut and mated with a terminal. Choosing the right terminal end assembly is extremely important for all cable applications.

Terminal End and Cable Connectors

Let’s look more closely at terminal end options and the progression of cable connectors through the years. Realizing early on that joining exposed wires together was unsafe, the idea of a cable connector was born. Originally made out of porcelain or Bakelite, they were difficult to manufacture and expensive to replace.

Metal and plastic connectors prompted the replacement of these original multi-piece assemblies, and they became the standard until advancements in plastics and rubber forming led to molded cable connectors. These are the most commonly used connectors in today’s consumer electronics and appliances. 
attaching cables together

Because there are many options available for connecting spliced cables together, you need to have the most comprehensive information to understand how important it is to choose the right connector. In this eBook you will find explanations of:

  • Terminal shell options
  • Non-molded components
  • Molded cable assemblies

At ConWire, we want you to be safe and your products protected. Choosing the right cable connector is vital for all of today’s complex cable systems. With almost 100 years of delivering power through cabling, we want to pass on our extensive experience and knowledge to you.

Visit our site today to download your free copy of The Advantages of Molded Cable Assemblies, and learn how ConWire can provide you with the molded cable assembly needed for your project.

Learn the Advantages of Molded Cable Assemblies

With Consolidated, it’s simple to create your own custom product.

While most of the modern gadgets we rely on appear wireless, behind the scenes things like smart phones, Wi-Fi, and tablets, require miles of wires and cable to operate. When it comes to supplying the perfect cables and wires for the modern digitized and online landscape, one-size definitely does not fit all.

Whether you are working with business machines, medical equipment, automation systems, computers, or telecommunications, you need custom designed and custom-built cables. At Consolidated Electronic Wire & Cable, thanks to our Create Your Custom Cable Now form, and our latest eBook, Creating a Custom Cable, it has never been easier to create a custom cable to match your unique needs.

New Online Form: Create Your Custom Cable Now

When you embark on your next custom wire and cable project, the best place to start is on Consolidated’s user-friendly website. There you will find our Create Your Custom Cable Now form. By completing this thorough but easy-to-navigate form, you are taking the first-step in our industry-leading custom cable production process. Other than general information, you will also be asked to supply details like:

  • Electric WireCable Type (Composite, Single or Multi Conductor, etc.)
  • Conductor (Number, AWG, Stranding)
  • Insulation Type
  • Shielding
  • Jacketing
  • Specification Demands

Once completed, just press the submit button. Soon after receiving your completed form, the experts at Consolidated will contact you directly. The best part of the form is that it gives us a solid idea about what you need, thus saving you both time and money.

In order to make filling out our Create Your Custom Cable Now even easier, we also offer a free eBook, Creating a Custom Cable to help guide you through the process.

New eBook: Creating a Custom Cable

Creating a Custom Cable eBookOur new eBook, Creating a Custom Cable, gives customers an insider’s view of the design and production of custom cables. Some of the highlights of our eBook include:

  • Basic considerations such as cable length, cable size, environmental temperature, flexibility, and whether the cable will be used indoors or outdoors.
  • Deciding what kind of conductor is right for you, including bare, tinned, or silver plated copper wire.
  • Choosing a material to insulate your cables that will offer both performance and protection.
  • Other topics include shielding, jacketing, cable fillers, and critical standards.

If you are in the market for the highest quality custom cables, Consolidated Electronic Wire & Cable is your best choice. Both our Create Your Custom Cable Now form, and our eBook. Creating a Custom Cable, will help you start the process of creating the perfect custom cables to match both your specific application and your bottom line.











Important Discussion Points When Designing a Custom Cable Assembly

Custom-designed cable assemblies are an integral component of countless applications, including commercial and home electronics, appliances, medical equipment, aerospace, military, telecommunications, automotive, industrial equipment and more.

custom-cable-assembly-v2Designing a cable assembly can be difficult and challenging. Thankfully, a custom cable manufacturer can walk you through the process. However, be sure to address the items below with your manufacturer to ensure the final product meets your precise needs and exact application requirements:

  • Provide the manufacturer with full-scale drawings in a format that is well-recognized within the industry. If your drawing was created using unfamiliar software, the manufacturer may not be able to access the file and time will be wasted—which puts pertinent conversations about manufacturing and pricing on hold.
  • Schedule a design consultation with your manufacturer. They will have design experts on staff who can meet with you to ensure the job requirements are realistic and that your part can be successfully developed. For instance, discussing material options can be greatly beneficial, as design experts may know of a better, more suitable material for your part and application. Additionally, the right assistance can significantly reduce costs without affecting quality or performance.
  • Was your cable assembly designed and manufactured previously? Were you dissatisfied with the quality, timing or cost? If so, it is important that you communicate this to your wire and cable manufacturer. Understanding why the part or prior manufacturing process was deficient will make it easier to address and correct these matters.

Creating a custom cable assembly can be a challenging process, so don’t hesitate to ask a cable manufacturer for assistance. Through nearly a hundred years of service, Consolidated Electronic Wire & Cable has obtained extensive engineering expertise in custom cable assemblies for a wide range of applications.

Our state-of-the-art facilities, advanced manufacturing processes and staff of engineers and technicians, ensure that our customers receive the highest quality of products and services. You can learn more about our custom cable assembly capabilities here.